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Abstract

This paper presents a method, along with some optimizations, for comput-
ing whether or not two triangles intersect. The code, which is shown to be fast,
can be used in, for example, collision detection algorithms.

1 Introduction

Most collision detection algorithms, such as OBBTree [Gottschalk96], sphere hier-
archies [Hubbard96] and BV-trees [Klosowski97], try to minimize the number of
primitive-primitive intersections that have to be computed. Still, a fast and reliable
method for computing the primitive-primitive intersection is desired. Since render-
ing hardware is often targeted for triangles, the primitives in collision detection al-
gorithms are often triangles as well. This paper describes a method for determining
if two triangles intersect.

2 Intersection Test Method

Let us denote the two triangles�� and��; the vertices of�� and�� by � �
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respectively; and the planes in which the triangles lie�� and��.
First, the plane equation�� � �� � � � �� � � (where� is any point on the

plane) is computed:
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Then the signed distances from the vertices of�� to �� (multiplied by a constant

�� ���) are computed by simply inserting the vertices into the plane equation:
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Now, if all �
� �
�

�� �, 	 � �� � and� (that is, no point is on the plane) and all have

the same sign, then�� lies on one side of�� and the overlap is rejected. The same
is done for�� and��. These two early rejection tests avoid a lot of computations
for some triangle pairs. Indeed, for a pair to pass this test there must be some line of
direction�� ��� that meets both.
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If all �
� �
�

� �, � � �� � and�, then the triangles are co-planar, and this case

is handled separately and discussed later. If not, the intersection of�� and�� is a
line,� � � � ��, where� � 	� � 	� is the direction of the line and� is some
point on it. Note that due to our previous calculations and rejections, both triangles
are guaranteed to intersect�. These intersections form intervals on�, and if these
intervals overlap, the triangles overlap as well. A similar interval test is used in a
different context by Laidlaw et al. [Laidlaw86]. Two situations that can occur are
depicted in figure 1.
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Figure 1: Triangles and the planes in which they lie. Intersection intervals are
marked gray in both figures. Left: the intervals along� overlap as well as the
triangles. Right: no intersection, the intervals do not overlap.

Now, assume that we want to compute a scalar interval (on�) that represents the
intersection between
� and�, and that, for example,� �

�

and� �
�

lie on the same
side of�� and that� �

�

lies on the other side (if not, you have already rejected it). To
find scalar values that represent the intersection between the edges� �

�

� �
�

and� �
�

� �
�

and�, the vertices are first projected onto�:

�
� �
�

� � � �� �
�

��� (3)

The geometrical situation is shown in figure 2. Then we want to compute a line
parameter value,��, for � � � �

�
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onto��, we see that�� �
�

���
�

and�� �
�

���
�

are similar, so
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Similar calculations are done to compute��, and an interval for
� is computed as
well. If these intervals overlap, the triangles intersect.

If the triangles are co-planar, they are projected onto the axis-aligned plane
where the areas of the triangles are maximized. Then a simple two-dimensional
triangle-triangle overlap test is performed. First, test all closed edges of
� for inter-
section with the edges of
�. If any intersection is found, then the triangles intersect.
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Figure 2: The geometrical situation:� �
�

are the vertices of��, �� & �� are the
planes in which�� and�� lie; �

� �
�

are the signed distances from� �
�

to ��; ��
�

are

the projections of� �
�

onto��; and�
� �
�

are the projections of� �
�

onto�, which is

the line of intersection.

Otherwise, we must test if�� is totally contained in�� or vice versa. This can be
done by performing a point-in-triangle test [Haines94] for one vertex of�� against

�� and vice versa.

2.1 Optimizations

Since the intervals can be translated without altering the result of the interval overlap
test, equation (3) can be simplified into:
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 � �	 �	 �� (5)

Therefore� does not need to be computed.
Also, the result of the overlap test does not change if we project� onto the

coordinate axis with which it is most closely aligned. Therefore equation (5) can be
simplified further:
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Here,� �
�� means the�-component of� �
�

and so on. The same principle was used by
Mirtich [Mirtich96] in order to get a numerically stable simplification of an integral
over a polygon’s area.
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3 Implementation & Performance

To summarize, the steps of the algorithm are as follows (complete C code is available
athttp://www.acm.org/jgt/papers/Moller97/):

1. Compute plane equation of triangle 2.

2. Reject as trivial if all points of triangle 1 are on same side.

3. Compute plane equation of triangle 1.

4. Reject as trivial if all points of triangle 2 are on same side.

5. Compute intersection line and project onto largest axis.

6. Compute the intervals for each triangle.

7. Intersect the intervals.

Note that after step 2, there is enough information to immediately test whether the
triangles are co-planar, but because this is a rare occurrence, the test is deferred until
after several more frequently occuring rejection tests have been performed.

Robustness problems may arise when the triangles are nearly co-planar or when
an edge is near co-planar to the other triangle (especially when the edge is close to
an edge of the other triangle). To handle these cases in a reasonable way the source
code provides a constantEPSILON (�) which the user defines. As a result, if any

��
� �
�

� � �, they are reset so that�
� �
�

� �. Geometrically, this means that if a point

is “close enough” to the other triangle’s plane, it is considered as being on the plane.
The source code does not handle degenerate triangles (i.e., lines and points). If it
did, then those cases would have to be detected first and then handled as special
cases.

Performance was measured for several different scenarios in a collision detection
program [RAPID97]. Both our method and the method from ERIT [Held97] were
found to be faster than the brute-force method,1 which took between��� and���

times longer to execute. Our method was found to be slightly faster (in RAPID)
in most cases when compared to the author’s implementation of ERIT’s method.
We also tested the performance exactly like ERIT and found that our method was
approximately 7 percent faster on an SGI Impact. However, on the SGI O2, we
found that our method had a slight tendency to be faster for lower collision ratios
(i.e. the number of triangle-triangle collisions divided by the number of tests), and
the break even point was around 45 percent. Therefore, having worse bounding
volumes in a collision detection program implies that our method should perform
better than ERIT and vice versa.

Our method is also used in an in-house collision detection package for a com-
mercial VR-platform [Oxygen97].

1Here, each closed edge of each triangle is tested for intersection with the other triangle and if, at any
time, an intersection occurs, then the triangles intersect. However, this method does not (easily) handle
cases where one or three edges are parallel to the plane of the other triangle.
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